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Abstract—The Autonomous Operations Planner, a research
prototype flight-deck decision support tool to enable airborne
self-separation, uses a pattern-based genetic algorithm to resolve
predicted conflicts between the ownship and traffic aircraft.
Conflicts are resolved by modifying the active route within the
ownship's flight management system according to a predefined
set of maneuver pattern templates. The performance of this
pattern-based genetic algorithm was evaluated in the context of
batch-mode Monte Carlo simulations running over 3600 flight
hours of autonomous aircraft in en-route airspace under
conditions ranging from typical current traffic densities to
several times that level. Encountering over 8900 conflicts during
two simulation experiments, the genetic algorithm was able to
resolve all but three conflicts, while maintaining a required time
of arrival constraint for most aircraft. Actual elapsed running
time for the algorithm was consistent with conflict resolution in
real time. The paper presents details of the genetic algorithm's
design, along with mathematical models of the algorithm's
performance and observations regarding the effectiveness of
using complimentary maneuver patterns when multiple
resolutions by the same aircraft were required.
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I.	 INTRODUCTION

In support of the National Aeronautics and Space
Administration's (NASA's) concept of Distributed Air/Ground
Traffic Management [1]  and the NASA Airspace System
Program research focus on functional allocation, researchers at
NASA Langley Research Center have been investigating the
extent to which aircraft separation responsibility can be
delegated to the cockpit. In the NASA concept, properly-
equipped aircraft perform autonomous flight by self-optinuzing
their four-dimensional trajectories while conforming to
constraints such as required times of arrival (RTAs) generated
by air-traffic service providers on the ground for the purpose of
traffic flow management. UnlikeV concepts that allow
autonomous flight only in segregated airspace, this concept
allows autonomous aircraft to fly in airspace shared with
aircraft managed by controllers or automation systems on the
ground.

The cornerstone of NASA Langley's research into
autonomous flight is the development of a prototype Airborne
Separation Assistance System (ASAS) tool called the

Autonomous Operations Planner (AOP) [2]. The ADP's role in
the cockpit is twofold: to support the flight crew in performing
the new duties required for assumption of separation
responsibility in the cockpit, and to support enhanced
optimization of the aircraft's flight path given the flexibility
enabled by autonomous flight. To successfully fulfill both of
these roles, the AOP seamlessly integrates with other airborne
avionics in charge of navigation, surveillance, and guidance,
including the Flight Management System (FMS), the Mode
Control Panel (MCP), the Automatic Dependent Surveillance-
Broadcast (ADS-B) transceiver, and receivers for Flight
Information System and Traffic Information System. AOP
outputs are integrated into existing cockpit displays, including
the Primary Flight Display (PFD), the Navigation Display
(ND), and specialized AOP pages on the Multi-purpose Control
and Display Unit (MCDU).

In order to enable delegated separation authority, the AOP
supports airborne conflict management. Specifically, the AOP
provides a variety of integrated airborne conflict detection and
resolution (CD&R) capabilities. To support strategic planning
(up to 20+ minutes look-ahead) ; the AOP provides intent-based
CD&R advisories for evaluation and ultimate acceptance or
rejection by the flight crew- Based on MCP and FMS data, the
AOP automatically displays any conflict—defined as a
predicted loss of separation (LOS) between two aircraft—on
both the ND and the MCDU AOP pages. If this occurs when
the aircraft's auto-flight system is in fully engaged ; FMS-based
(strategic) Lateral Navigation (LNAV) and Vertical Navigation
(VNAV) guidance modes, the AOP (upon request) displays a
full four-dimensional resolution route on the ND that can be
uploaded directly into the FMS for execution. If the aircraft is
in an MCP-based (tactical) guidance mode (e.g., altitude hold
and heading select), the AOP automatically displays MCP
resolution advisories (e.g., altitude, vertical speed, and-or
heading targets) on the PFD and ND when a LOS is predicted.
The AOP also supports short-range tactical maneuvering (up to
5 minutes look-ahead) by providing state-based CD&R
information and ultimately suppresses its CD&R output if
Traffic Alert and Collision Avoidance System (TCAS)
resolution advisories become available.

This paper focuses on the design and performance of the
Pattern-Based Genetic Algorithm (PBGA), which provided
strate gic conflict resolution (CR) for AOP within batch-mode
experiments performed at NASA Langley. PBGA creates



conflict-free routes that meet time-based flow constraints
(required times of arrival) and can be directly uploaded into the
FMS [3]. A primary focus of PBGA's design has been to
enable its use as a viable real-time CR algorithin. The paper
begins with a high-level description of batch-mode simulation
experiments performed by NASA that relied solely on the AOP
strategic CR capability for separation assurance. Next, an
overview of PBGA is provided with a description of additional
enhancements developed to support the batch-mode
experiments. The performance of PBGA during the batch mode
simulations is then presented in tennis of mathematical models
of computation time and success rate as a function of traffic
density. Finally, the paper snakes observations regarding the
complementary effectiveness of the different maneuver patterns
when multiple resolutions were required for the same aircraft.

II. BATCH-MODE SIMULATION EXPERIMENTS

A. Overview

The Safety Performance of Airborne Separation (SPAS)
simulation study is designed to investigate the effect of traffic
demand on the safety performance of distributed air traffic
control (ATC) [4],[5]. In a distributed ATC environment,
aircraft are responsible for traffic separation while maintaining
adherence to traffic flow management constraints. The SPAS
study is a series of batch-mode Monte Carlo simulation
experiments designed to analyze and quantify the safety
behavior of airborne self-separation. The experiments will also
examine the implications of prediction errors and system
uncertainties for ASAS system safety performance. To date,
the first two simulation experiments have been completed.

The first experiment evaluated airborne self-separation
behavior in a baseline scenario consisting of randomized routes
in a generic high-density airspace in which all aircraft were
constrained to the same flight level. Sustained traffic density
was up to about 10 times the traffic density in a typical sector
today [4]. This scenario included limited sources of uncertainty
(primarily modeling simplifications in the predicted
trajectories) and was intended to develop an initial
understanding of the safety performance of airborne self-
separation and to establish a baseline for comparison with later
experiments that add other sources of uncertainty.

The second experiment evaluated the potential impact of
operator (flight crew) delay or inaction when responding to
airborne self-separation systems [5]. This experiment modified
the simulated pilot behavior from the first experiment by
delaying resolution actions by as much as 240 seconds when
responding to detected conflicts. Additionally, a percentage of
pilots, selected at random, completely ignored detected
conflicts and therefore performed no conflict resolution actions.
This experiment's scenarios were similar to those used in the
baseline experiment, but the maximum sustained average
traffic density was increased to approximately 12 times the
density in a typical sector today.

In the scenarios selected for both experiments, each
autonomous aircraft's FMS active route was a straight path,
generated at random near the boundary of a circle of 160 runt
radius in such a way that the route passed through a circular

evaluation area of 80 mni radius concentric with the larger
circle. The evaluation area represented a generic high-density
en route sector. A required time of arrival (RTA) time
constraint was added to each aircraft's route downstream of the
evaluation area. All flight paths were restricted to a single
altitude within the evaluation area. By design, the randomly
generated routes exhibited a high rate of conflicts whose lateral
encounter angles varied over nearly the full range of possible
values. For this study, the autoflight mode remained fully
coupled to the FMS for both lateral and vertical navigation; in
other words, only strategic maneuvering was allowed. In an
operational setting, a tactical system would normally be
available as a backup to the strategic system.

B. Sinnilation Environment

The SPAS simulation runs were conducted in the Air
Traffic Operations Laboratory (ATOL) of the NASA Langley
Research Center. ATOL is a distributed simulation platform
consisting of a network of workstation-class computers with a
High Level Architecture corninunication infrastructure. Each
aircraft simulator is a real-time, medium fidelity, 6-degree-of-
freedom aircraft simulation running on its own computer. The
aircraft simulator includes separate software emulations of an
FMS, AOP, an ADS-B datalink, and other avionics. The
baseline study simulated between 14 and 72 independent
aircraft simultaneously in batch mode. The second experiment
increased the maximum number of aircraft to 88. When an
aircraft passed beyond the evaluation area, it was replaced by a
new aircraft with another randomly-generated route to maintain
average traffic density. Each aircraft was "flown" by pilot
model (PM) software that perform7ed basic pilot conflict
management actions. The PM was composed of a sensory input
model, a rule-based decision model, and an actuator response
model, enabling a range of human "personalities" to be
configured to study the impact of variation in pilot behavior.

To support both experiments, AOP strategic CR was
configured for lateral maneuvers only. ADP's intent-based
conflict detection (CD) look-ahead was set to 10 minutes for
conflict alerts and 20 minutes for conflict resolution. The
experiment used the standard 5 mni minimum separation
requirement, but ADP's internal nummum separation
requirement was set to 5.1 mni and increased by 0.25 mni
during resolution as an additional buffer. AOP's capability to
define trajectory prediction uncertainty bounds [6] to avoid
missed alerts that can result from inaccuracies in predicted
trajectories was not utilized during these runs. Priority Rules
were used within AOP to limit the number of simultaneous
resolution attempts between two aircraft in conflict; the rules
identified one aircraft as having priority, requiring the other
aircraft to maneuver. When the time remaining until predicted
first LOS was less than a predetermined threshold.' either
aircraft was allowed to resolve the conflict. All tactical
maneuvering support within AOP was disabled for these nuns,
including tactical conflict detection and resolution.

ADP's strategic resolutions were required to take all known
trajectory constraints into account. The main constraints for

' The threshold was five minutes for the first experiment, and seven
munites for the second experiment.



both experiments were the RTA constraints. Any AOP-
generated resolution accepted by the pilot model was uploaded
directly into the FMS and executed as an active route change.
Upon execution, the new aircraft trajectory was broadcast to all
neighboring aircraft in the form of trajectory change points
using trajectory change reports within simulated Mode S ADS-
B. Both experiments assumed perfect ADS-B transmission (no
dropouts), and each cycle of trajectory change reports
contained enough points to define at least the first 20 minutes
of the aircraft's future trajectory.

III. PATTERN-BASED GENETIC ALGORITHM DESIGN

A. Overvicnv
PBGA selects and optimizes a resolution maneuver from a

set of pre-defined maneuver patterns [3]. Each maneuver
pattern is a template designed to execute a different type of
user-acceptable path modification. For example, one pattern
defines a lateral offset to be added to the FMS active route
where another defines a short-cut path from one active route
leg to another downstream leg. The creation of a resolution
route using a pattern is then just a matter of "positioning and
sizing" the pattern (i.e., determining where along the active
route to start the maneuver and defining values of its geometric
parameters) to avoid the conflict. PBGA avoids unexpected and
undesired interactions between the geometric requirements of
different patterns by applying only one pattern at a time, - so
each pattern's geometry can be desi gned without regard to the
geometric requirements of the other patterns.

To determine which maneuver patterns are viable (i.e.,
applicable) for a given conflict scenario; PBGA defines an
independent set of viability constraints for each pattern. PBGA
checks these constraints against the current active route, the
location of predicted LOS ; and any other relevant information.
Viability constraints are typically based either on geometric
considerations (e.g., whether an active route leg is long enough
to perform a minimum lateral offset maneuver) or on
procedural limitations (e.g., the new route is not allowed to
bypass an altitude, time or speed constrained waypoint), but in
practice can be based on any relevant criteria.

From the set of viable maneuver patterns, PBGA creates
one or more parallel populations. Each population is a
collection of chromosomes (routes based on the maneuver
patterns) that reproduce, mutate ; and compete against each
other over the course of several generations. At the end of this
process, the maneuver whose fitness (a numeric value) is the
smallest in the population is its resolution advisory, provided
that this fitness is below a pre-defined threshold; otherwise the
population "fails to converge" and produces no advisory.

To support PBGA's convergence to an optimum resolution
maneuver, each maneuver pattern provides its own definition
of an optimal maneuver. A maneuver pattern can optimize a
global characteristic such as minimum path or minimum fuel
usage, but patterns typically attempt to optimize some aspect of
the maneuver's geometry. For example, a lateral offset

2 The simultaneous application of multiple patterns would be achieved by
designing a new "combined" pattem.

maneuver can optimize the lateral offset distance from the
original route, the distance traveled while on the offset path, or
some combination of the two, by making its fitness a function
of these parameters when the maneuver is conflict-free.

The current AOP concept for strategic CR is to provide a
single lateral and a single vertical resolution maneuver for
display to the flight crew. Since the SPAS experiments were
limited to a single altitude, only a single lateral solution was
desired and hence, only a single population was required. By
placing all viable patterns of the same type (lateral or vertical)
in the same population, these patterns are forced to compete
with each other with only the most optimum resolution (in this
case, the resolution with the smallest fitness value) returned.

B. Selection and Design of Lateral Maneuver Patterns
Three lateral maneuver patterns are currently defined and

implemented in PBGA. For the lateral maneuver patterns, a
design decision was made to let all three of PBGA's lateral
maneuver patterns compete against one another for all conflicts
during the experiment. Because the experiment used computer-
based pilot models in a batch simulation environment, the
experiment imposed no restrictions on acceptable lateral
maneuvering due to pilot preference. As long as the new
resolution route successfully resol ved the conflict, any of the
lateral maneuvers was acceptable. This decision was intended
to allow the greatest possible flexibility in resol ving conflicts.

Three lateral patterns are currently defined. All three were
available for the experiment. Tables I, II, and III list the
parameters that define the geometry for each pattern. Each
parameter is a gene, that is, a degree of freedom manipulated
by the genetic algorithm to fund an optimal, conflict-free
resolution path. The tables provide each parameter's type
(discrete if the parameter is restricted to a finite set of values;
continuous if the parameter can vary continuously over a
range') and its description. Figures 1, 2, and 3 present actual
screen captures of the enhanced cockpit ND in ATOL showing
the patterns as used by the SPAS simulation system. The
magenta line in each screen shot represents the original
(conflicted) FMS active route, the white or yellow "dogbone"
on this route represents the predicted conflict (first LOS to last
LOS), and the blue line represents the AOP proposed strategic
CR route. The white chevrons represent traffic aircraft
positions (all at the same altitude as the ownship aircraft, as
indicated by the symbol 00" at each aircraft's position) and
the green dashed circle represents the SPAS evaluation area.

All maneuver patterns were restricted to begin no closer
than 15 nrmi from the aircraft position at the time the resolution
was generated. As can be seen from the figures, each of the
three patterns uses a different geometrical approach to solve the
conflict. Though each pattern is individually relatively simple
and potentially restrictive in its abiliq to solve a wide range of
problems; the three patterns, as a set, are highly complementary
and provide a very flexible approach to resolving conflicts. For
example, the Direct Intercept pattern is not very effective when
the original route is long and straight, nor is the Path Stretch

3 A continuous parameter is considered to vary continuously from its
minimum to its maximum value even if the results sometimes "snap" to values
determined by route geometry.



Figure 1. Lateral Offset pattern Figure 2. Direct Intercept pattern example Figure 3. Path Stretch pattern

TABLE I.	 LATERAL OFFSET PATTERN PARAMETERS

Name Type Description
maneuver le g discrete Route leg on which offset is applied

offset direction discrete Direction of offset from ori ginal route

start distance continuous
Distance from start of maneuver leg at
which offset initiates

offset distance continuous Perpendicular	 distance	 from	 original
route to offset path

offset length continuous Distance traveled along offset path

Pattern if there are no capture waypoints along this straight
path, but this case is where the Lateral Offset Pattern has the
most flexibility. On the other hand, if the original route has a
large number of short legs between turn waypoints, the Lateral
Offset pattern becomes significantly less effective, but the
Direct Intercept and Path Stretch patterns are now very flexible.

Additionally; in airspace with very dense traffic, it is
expected that an aircraft will perform several resolutions in
succession as new conflicts arise. If only the Lateral Offset
pattern were available, strategic CR could lose effectiveness as
each resolution "segments" the route by replacing a long
straight leg with several shorter leas between turns. If only
Direct Intercept pattern were available, it would "straighten"
any route until the pattern lost effectiveness. With both patterns
available, the very thing that reduces the effectiveness of the
Lateral Offset pattern increases the effectiveness of the Direct
Intercept pattern: as one pattern adds legs to the route, the other
removes them; and vice versa. The Path Stretch pattern
complements the others both by adding legs (if leaving and
retuning to the same leg) and by removing legs (if capturing a
waypoint several legs downstream from the maneuver leg). The
end result is a dynamic and effective resolution capability.

C. Handling of Unmet RTA Constraints
The goal of the AOP strategic CR algorithm is to return a

new route that is conflict-free with respect to all hazards
(including traffic aircraft and airspace hazards) and meets all
constraints (e.g., an RTA time constraint at a defined waypoint)
imposed on the aircraft. There are occasional situations,
however, in which this goal cannot be met. For example, if an
aircraft's active route meets an RTA by flying straight to the
constraint waypoint at the aircraft's maximum speed, any
maneuver whatsoever will necessarily fail to meet the RTA. It

TABLE II.	 DIRECT INTERCEPT PATH PATTERN PARAMETERS

Name Type Description
maneuver leg discrete Route leg from which new route leaves
intercept le g discrete Route le g to which new route returns

turnout
discrete

Direction	 in	 which	 new	 route	 leaves
direction original route

Distance from start of maneuver le g at
start distance continuous

which turnout  nitrates
Angle at which new route leaves original

turnout angle continuous route

TABLE III.	 PATH STRETCH PATTERN PARAMETERS

Na ►ne Type Description
maneuver le g discrete Route leg from which new route leaves

capture waypointoint discrete Waypoint to which new route returns
Direction in which new route leaves

tunout direction discrete original Ioute
Distance from start of maneuver leg at

start distance continuous
which turnout initiates

turnout angle continuous
Angle	 at	 which	 new	 route	 leaves
original route
Distance from turnout at which new

stretch distance continuous
route hunts toward ca tore waypoint

was decided for the SPAS experiment that in the case where no
conflict-free route was found that also maintained the RTA
constraint; the conflict-free route that most closely met the
RTA constraint (that is, a route that minimized delay or early
arrival) was to be considered optimal and should be returned as
a successful resolution.

To handle this situation, a new step was added to the fitness
calculation. When a conflict-free route failed to meet its RTA,
the chromosome's fitness was defined by

fitness =UnmetRTAPenolty*abs(RTA—ETA), 	 (1)

where the ETA was the estimated time of arrival at the RTA
point. The UnmetRTAPenalty value was chosen so that this
fitness value would always be less than the ConflictPenalty
value (which was the best-case fitness value for a conflicted
route) but greater than the worst-case conflict-free route that
met the RTA (Fig. 4). PBGA defines a successful resolution as
any route whose fitness value is below the ConflictPenalh.,
value: this allowed it to return a conflict-free route with an



unmet RTA as a resolution advisory, but only if it found no
conflict-free solution that met the RTA constraint.

Increasing
Fitness
Values

Trajectory
~ Failure

Penalty

Conflicted
Resolutions

Conflict
~ Penalty

De-conflicted
RTA Nonconformant
Solutions

Unmet RTA
Penalty

De-conflicted
RTA Conformant
Resolutions

D. Selection of Genetic Algorithm Parameters

In principle, a genetic algorithm can be "tuned" by setting
parameters such as population size, number of generations, and
mutation rate. Though no specific analysis was performed to
deternune the most effective values for these parameters,
values selected during earlier work on PBGA were empirically
shown to have acceptable performance through months of
system testing that preceded the SPAS experiment. These
parameter values, which were not chan ged during any runs in
the SPAS experiment, are presented in Table IV. For more
information on the use of these parameters, see [3].

E. Strategic CR Computational Load Design

The objective of the SPAS experiment is to investigate the
effect of traffic demand on the safety performance of
distributed ATC. To support this investigation, the experiment
used scenarios of varying levels of traffic density, from current
day levels to several times current day levels. This increased
level of traffic increased the computational load on the entire
AOP system, not just its strategic CR functionality

Reference [3] details several of the design approaches
implemented within PBGA to increase ycomputational
efficiency and expedite the identification of an acceptable
resolution route. One of these approaches is the dynamic
reassessment of the acceptable ranges of pattern parameters.
For each maneuver pattern, the parameters are quantified in the
order presented in Tables I, II, or III. As each parameter is
quantified; geometric constraints are imposed on the remaining
parameters to eliminate values that, in the context of the values
already chosen, would prevent the creation of a candidate path.
This approach avoids creating a large number of invalid
chromosomes in each generation of a population, as would
occur if the parameters were checked for consistency only after
the population was filled; this serves to increase the
computational efficiency of the algorithlm. 4 Another approach
described in [3] is the separation of the conflicted fitness
function from the pattern optimization fitness functions. By
focusing solely on deconfliction until a conflict-free solution is
obtained, the identification of a conflict-free route is expedited,
though the achievement of an optimal conflict-free route may
be delayed. Since obtaining a conflict-free route is the primary
objective, with optimization a distant second, this approach
also increases the success rate of PBGA. These approaches
were all used without modification for the SPAS experiment.

The increased SPAS traffic levels, however, required a
redesign of the way the load of the computer's central
processing unit (CPU) is balanced between the strategic CR
functionality and the rest of AOP's functionality. After PBGA
is initiated, it can use 100% of the CPU resources until it
completes. Since the algorithm can take several seconds to
finish, this has a negative impact on other AOP functionality
that may need to update on a one-second periodic cycle (e.g.,
processing of new ADS-B data, creation of new ownship

4 The approach of checking parameters for consistency after all values are
set is valid when a genetic algorithm does not have AOP's time constraints.

Figure 4. Fitness function approach with unmet RTA.

TABLE IV.	 GENETIC ALGORrrM\4 PARAMETER SETTINGS

Parameter Valle Description
population Number of chromosomes (candidate resolution

size
-)0

routes) evaluated in each generation.

number of Number of times the population is "evolved"
20 through mating and mutation to find the optimal

generations
SO111t1011.
In each generation of the population, the number

number of
of chromosomes with the best fitness scores that

10 "survive" into the next generation. 	 The non-
survivors surviving chromosomes are replaced by mating

the survivors to produce new chromosomes.
In each generation of the population, the number
of chromosomes with the best fitness scores that

number of
are	 not	 allowed	 to	 mutate.	 All	 other

elites
2 chromosomes	 have	 a	 positive	 probability	 of

mutating, whether they are 	 survivors	 of the
previous	 generation	 or	 newly	 produced	 by
mating.
In each	 generation.	 the percentage	 of Renes

mutation 20% (maneuver pattern parameters)	 from non-elite
rate chromosomes that are mutated. Selection of the

specific parameters to mutate is random.

trajectory predictions, and conflict detection). Since situational
awareness of chan ges to the aircraft's current conflict status is
more important than finding a strategic solution to a previously
detected conflict, a design chan ge forced PBGA's thread to
yield the processor at strategic times within the algorithm.
Though this design increased the total elapsed time of PBGA, it
provided the proper balance of computational load to support
the entire range of AOP functionality required for SPAS.

IV. SAFETY PERFORMANCE OF AIRBORNE SEPARATION

EXPERIMENT RESULTS

The baseline study consisted of six sets of simulation runs,
in which each run performed six hours of continuous
simulation at a sustained traffic density level and each set
consisted of six independent nuns all with the same parameters
(except for the two highest density sets, which had two runs
each). Table V (reproduced from [4]) presents the key statistics
for the six run sets.

The mean density numbers were selected to represent
approximate multiples of current day traffic demand levels. In



[4], 1X traffic levels for current-day operations were estimated
at densities of 1.8 per 10,000 nmi' for a median-density en-
route sectors and 8.45 per 10,000 nmi` for a high-density en-
route sector. The traffic levels simulated therefore represent a
range of density from 2X to nearly 1OX current median en-
route sector traffic density.

The mean number of traffic conflicts generated within the
test region increased from 0.82 conflicts per flight hour at a
density of 3.45 aircraft per 10,000 nmi 2 to 3.15 conflicts per
flight hour at a density of 17.18 aircraft per 10,000 mm2 . There
were only three cases of LOS, with points of closest approach
at 4.986; 4.989, and 4.999 nmi respectively. These three cases
did not involve ,I of conflict resolution, but were the
result of missed alerts due to an approximation used in turn
modeling within the trajectory predictor. These missed alerts
would have been prevented by trajectory prediction uncertainty
bounds if the bounds had been utilized durin g these runs.

For the pilot delay experiment, Table VI (reproduced from
[5]) illustrates the results of an additional 904.2 fli ght hours
and 3206 conflicts. Using the same estimate of 1X sector
density as the baseline experiment, these runs represent 5X to
12X current-day median en-route sector traffic density. These
nuns all used a pilot delay value of 3.5 seconds. All three LOS
events were caused by failures of PBGA to return a conflict-
free solution for either aircraft in the conflict pair. Each of
these events involved a highly complex multiple-aircraft
situation. In the two-LOS case at density 21.4, a four-aircraft
conflict situation caused one aircraft to lose separation with
two of the other aircraft.

V_ PATTERN-BASED GENETIC ALGORITHM PERFORMANCE

This section presents an analysis of the performance of
PBGA according to various metrics applied to data obtained
from AOP duruig the SPAS baseline study. These data include
an observation for every CR attempt (call to PBGA) that
occurred during any simulation, including CR attempts that
were later aborted or canceled by the pilot model or by external
events such as an update of ownship intent. The dataset also
included an observation each time PBGA was not called
because the time to loss of separation was less than one minute.
While all these events contributed to the outcomes of the SPAS
experiment, they were excluded from the following analyses,
which are intended to represent the performance of PBGA
when it is allowed to nin to completion. In this study, the
remaining set of data is called the SPAS dataset.

A. Elapsed Time of Conflict Resolution

The elapsed time of conflict resolution, TcR, is the amount
of simulated time that passed between the instant when AOP
issued a request to execute PBGA and the instant when AOP
received the result of this computation from PBGA. Since all
simulation occurred in real time, this measurement is a good
approximation of the real (wall-clock) elapsed time.

This study used the SPAS dataset to estimate TcR. The start
and end times of PBGA were recorded with a precision of one

5 Reference median-density sector ZOA31 (Cleveland ARTCQ for Flight
Level 310 on 19 Feb 2004.

TABLE V.	 SUMMARY OF SPAS BASELINE SIMULATION RUNS.

Sustained
mean

density'

Standard
deviation

Peak
densitV

Simulation
hours

Flights Sum of
flight
hours

Sum of
conlicts

3.45 0.59 4.97 36 881 237.27 195
6.11 0.83 8.29 36 1527 418.6 550
8.61 0.97 11.44 36 2195 544.57 1018

11.64 1	 1.23 1	 15.34 1	 36 3000 797.17 1	 1788
15.24 1.49 19.31 12 1302 347.45 963
17.18 1.54 1	 21.39 12 1560 399.08 1256

Totals 168 10465 2744.14 5770

TABLE VI.	 SUMMARY OF SPAS PILOT DELAY EXPERIMENT SIMULATION
RUNS.

Sustained
mean density '

Mean pilot
delay

Sum of flight
hours

Sum of
conflicts

Total
LOS

11.2 3.5 240.73 583 0
16.3 3.5 90.71 316 1
21.4 3.5 572.76 2307 2

Totals 904.2 1	 3206 1	 3

' Units of density are aircraft per 10' ruui'' in all cases.

second, so the elapsed time of each CR attempt was measured
in whole seconds. Since the objective was to estimate TcR for
an arbitrarily selected conflict, if several CR attempts were
made on the same unique conflict (that is, with similar input
each time, except that aircraft positions were advanced a few
seconds), the first value of TcR in the sequence was selected as
the most representative value and the others were discarded.
This resulted in a set of 6944 observed values of TcR, including
6699 cases in which PBGA returned a conflict-free route and
245 cases in which CR failed to converge.

1) Hvpothetical Model of Performance
Informal observations of processor load during simulations

indicate that the bulk of AOP processing during execution of
PBGA is spent on conflict probin g and evaluation of the
conflicted fitness function.' The conflict probe, performed
once on each chromosome that is evaluated, consists of
independent calculations comparing the trajectory of the
ownship with the trajectory of each of the Nac traffic aircraft
considered by the probe. The conflicted fitness function,
executed once on each conflicted chromosome, consists mainly
of N,1c calculations to find the region of airspace (if any) in
which each traffic aircraft is likely to conflict with possible
ownship trajectories. The expected total number of
chromosomes evaluated during PBGA, however, can be
considered a constant.' All processing outside of PBGA is
periodic and can be assumed to increase elapsed time by a
constant factor not much greater than unity. These facts suggest
that the principal trend will be for the total elapsed time, TcR, to
be a linear  function of NAc.

As NAc increases, however, a conflict-free route may be
harder to find. This suggests that a higher percentage of

6 The principal contributors to PBGA processing time were identified by
the Rational Quantify performance profiler

In the experiment, the conflict probe considerd all traffic currently being
simulated at the time CR was attempted. Conflicts detected outside the
evaluation region were ignored during later stages of computation.

S The only variation in the number of chromosomes evaluated was due to
the random selection of chromosomes to mutate.
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chromosomes may have conflicts and may execute the
conflicted fitness function, causing TcR to grow at more than a
linear rate. It is reasonable to model this accelerated growth
rate by a term that is quadratic in N,,C. A hypothetical predictor

of elapsed time, TcR, then has the general form:

TcR = A + A NAL + Q2 NAC Z 	 (2)

Because the input values are limited by the traffic densities
that might occur in en-route airspace within the next few
decades, this predictor is not intended to address the asymptotic
behavior of PBGA. While it is a reasonable guess that any
trends in the existing data will continue to some extent, caution
is needed when applying any results of this study much beyond
the range studied in SPAS.

2) Initial Exploration of the Data
The observed values of NAC ranged from a minimum of 3 to

a maximum of 70 among all 6944 unique CR requests in the
SPAS dataset. The number of traffic in CR requests was
clustered around six distinct modal values, as might be
expected since the simulations were run on scenarios of six
different sizes. The maximum frequency of any value of N,c
was 404 CR requests for N,C = 41. Fig. 5 shows the combined
distribution of NAC and TcR among all CR requests.

Judging from Fig. 5, the mean value of TcR for any given
value of NAC appears to lie along a line comiecting the six peak
frequencies of observation. Assuming that the remaining
variation in TcR fell in a normal (that is, Gaussian) probability
distribution whose variance was independent of NAC, one could
then perform a linear regression by the method of least squares
to estimate the parameters of (2), treating NAC and N,c` as
independent predictors of the observed variable TcR . It is clear
from Fig. 5, however, that the variance of TcR is much greater
for larger values of N,c than for smaller values. Moreover, TcR
does not appear to have a normal probability distribution. For
example, consider the values of TcR observed at NAC = 41. Fig.
6 compares the observed values against a "best fit" normal
distribution determined by the normfit function in
MATLAB version 7.7.

Fig. 6 illustrates at least three problems. First, there are
outlier observations at both ends of the range. Second, the
remainder of the distribution (excluding the outliers) is skewed,
with a larger tail on the right than on the left. 9 Third, since the
elapsed times in this experiment were measured in whole
seconds, all the observed values fell in a discrete distribution
with only 11 distinct values. It should be noted, however, that
except for a small number of outliers on the left (about 1% of
the data in this case), no value differs by more than two or three
seconds from the values predicted by a normal distribution. Our
concern therefore is with the validity of applying the method of
least squares in this case, not with the general notion of fitting a
model to these data.

3) Estimation ofPar-ameters
Rather than linear regression by the method of ordinary

least squares, estimation of TcR, used a robust method of linear

9 The causes of these two problems are identified in Subsection V.A.4.

Figure 5. Unique CR requests for N .,,c traffic aircraft completed in TcR
seconds elapsed tune.
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Figure 6. Elapsed CR time in seconds for 41 traffic aircraft.

regression, specifically the robustfit function of MATLAB
version 7.7 with the default settings. Conveniently expressed in
terms of N,,1100, the result is

=2.381+11.698- N    `'c +7.315- NA° 	 (3)
100	 ( 100

This estimate of TCR ranges from 2.74 to 14.15 seconds over the
3 to 70 traffic aircraft observed in CR requests in SPAS.

Fig. 7 shows this model superimposed on the range of TcR
at each NAC for which there were at least two observations. The
mean value of TcR follows the model closely; of course, the
means of very small samples tended to deviate further from the
estimated value. The extreme values plotted at each NAC are the
minimum and maximum values of TCR observed over all first
CR attempts with N,C traffic aircraft, the distance of each of
these values from the mean increases not only with the variance
of TcR but also with the size of the sample, so it is not
surprising to see large variations in the range of these values.
The 16t` and 84'1' percentiles are arguably a better
representation of the variability of the data, these percentiles
were selected because they are the percentile ranks at one
standard deviation below and above the mean of a normal
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Figure T Elapsed CR time (seconds) vs. number of traffic aircraft

distribution. A linear model (not shown here), computed by
similar methods, did not fit the data well.

The standard deviation of TcR, which is clearly increasing

with N4c, was estimated by (TcR — fi)I (N —1) at each value of

Nac for which there were at least two CR attempts, with N the
nurnber of CR attempts and ,u the observed mean TcR at that
value of Nqc. Since N actually ranged from 2 to 404, the
expected error of this estimator was small for some values of
NAc but large for others. Using robust linear regression, a
quadratic function of NAc appeared to fit the data better than a
linear function. The estimated standard deviation of TcR was

z

6 = 0.349 +1_700. 
N Ac + 1.7.56 

N 4c	 (4)
100	 100 )

Fig. 8 compares this model to the sample standard deviation
of the subset of CR attempts at each value of NAc. Not
surprisingly, the standard deviations of small samples often had
large deviations from the prediction, but larger samples tended
to behave as predicted.

Other methods to model the mean and standard deviation of
TcR, including ordinary least-squares linear regression and
least-squares linear regression scaled for more uniform
variance, produced models that agree with the robust model to
within a fraction of a second over the applicable range.

4) Search for Alternative Models
There may be other factors that influence the elapsed time

of CR. For example, when all patterns were found non-viable,
PBGA completed unusually quickly, whereas in other cases of
failure to converge and cases when the RTA was not met,
PBGA often completed unusually slowly.

Failure to converge and urn-net RTA seem to account for
most of the outliers and some of the skew of the distribution of
TcR. The remaining variability- in the data was investigated
within the subset of the SPAS dataset consisting only of CR
attempts that returned a conflict-free route that met the
ownship's RTA. This subset also excluded eight CR attempts
for which some information was missing. The remaining data
comprised 6503 observations in which the errors in TcR can

Figure 8. Standard deviation of elapsed CR time (seconds) vs. number of
traffic aircraft.

reasonably be assumed to be normally distributed, although not
with uniform variance. A multivariate linear regression by the
method of least squares on 11 predictor variables selected from
among the possible candidates in the SPAS dataset (eliminating
variables that were obviously redundant) resulted in estimated
regression coefficients for these variables, as well as bounds of
the 95% confidence intervals of the coefficients.

This regression was iterated; after each iteration, the
variables corresponding to coefficients that were statistically
insignificant (that is, whose 95% confidence intervals  included
the value zero) were eliminated. If there were no such
variables, the variable that explained the least amount of
variation in TcR was eliminated. (The product of each variable's
regression coefficient and the difference between its least and
greatest observed values was deemed to be the amount of
variation explained, that is, the estimated number of seconds
this variable might add or subtract from TcR.) In the fifth
regression there were only three variables: number of traffic
aircraft (NAc), total nuunber of waypoints in the resolution route
(ranging from 7 to 15). and fitness of the winning chromosome
(ranging from 8.0 to 255.7). The coefficients of this regression
(including the estimated constant term in (2)), and the bounds
of their 95% confidence intervals, are shown in Table VII.
Although the regression coefficient of total number of
waypoints was greater than that of the other two variables, NAc
had a much larger range of values (from 3 to 70) and as a result
explained approximately three times as much of the variation in
TcR as either of the other two variables.

The number of waypoints in the conflicted route (prior to
PBGA) was not considered in this regression, since it was
known for only 1622 CR attempts. When the regression was
restricted to these CR attempts and this variable was included
along with the three variables in Table VII; it explained by far
the least amount of variation in TcR. (In fact the coefficient of

TABLE VII. COEFFICIENTS OF REDUCED MULTIVARIATE REGRESSION TO
PREDICT ELAPSED TIME OF CR.

Term in regression
equation

Re ression coefficient
Estimated Lower bound Upper bound

Constant -4.412 -4.712 -4.113
Traffic aircraft 0.178 0.176 0.180

Total waypoints 0.506 0.480 0.533
Fitness 0.015 0.014 0.016



NAC increased slightly.) Even when the only other variable was
Nqc, the coefficient of active waypoints was only 0.202. It does
not appear worthwhile to use this much smaller dataset so that
this variable could be included in other calculations. On the
other hand, total waypoints and fitness of the winning
chromosome are not known until after PBGA finishes. Number
of traffic aircraft is therefore the only really useful predictor of
elapsed time based on this dataset.

B. Probability of Failure to Converge

The probability of failure to converge is defined as

PFC - NFC I (NR + NFc ) , where NFc is the number of CR
attempts that failed to converge and NR is the number that
returned a conflict-free route.

In order for pFc to represent the probability of solving an
arbitrarily chosen conflict, only the first CR attempt for each
Cinque conflict was considered in this calculation. This is a
conservative method, and it is representative of the outcome of
an arbitrary CR attempt.

Since CR is expected to become "harder" as traffic density
increases, one can hypothesize that pFc increases with the
nurnber of traffic aircraft NAc. Fig. 9 shows the values of pFc
computed by aggregating CR attempts at each value of N,c for
which there were at least 64 observations. (Due to the low
failure rates ; groups of much fewer than 64 observations cannot
estimate the probabilities with sufficient precision.)

There is clearly a trend toward larger values of pFc for
larger values of Nqc, as one might expect (since CR is "harder"
in denser airspaces). Moreover, there appears to be an
acceleration of the trend at larger values of Nc. This suggests a
model that is quadratic in N,c. Fitting this model to the data in
Fig. 9 using linear regression by the method of least squares,
the resulting predicted relationship is

z

	

100 pFc =1.01- 2.02 - N'I c + 16.97 - 
N

A'	 (5)
100	 100

Despite the large number of first CR attempts observed,
none of the coefficients of (5) is statistically significant at the
95% level. Nevertheless, this prediction matches the observed
results reasonably well when the data are subdivided into three
clusters of more than 2000 observations each, as shown in
Table `jIII. A robust method yielded similar regression
coefficients, but did not result in as close a fit to the data in this
table. In any case, the probability of failure to converge is
clearly low even when CR is not re-tried.

C. Evolntion of Winning Patterns

In 1597 cases within the SPAS dataset, the same flight
executed two or more conflict resolutions in succession. Due to
the complementary features of the three available patterns, one
might expect to find that the relative probabilities of different
winnin g patterns would change as a flight executed a second,
third, or fourth resolution. In fact, this was observed. Since the
flights generally started with similar routes (primarily long,
straight paths), it is reasonable to aggregate all first resolutions,
all second resolutions, and so forth. Since only two flights
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TABLE VIII. PREDICTED AND ACTUAL FAILURE RATES.

Range of	 Number of	 Number of failures
Nac	 observations	 Predicted	 Actual

3 to 34	 2334	 37.26	 32
35 to 46	 2091	 63.17	 65
47 to 70	 2519	 148.08	 148
3 to 70	 6944	 248.51	 245

executed more than four resolutions each during the
experiment, the data illustrate only a limited progression, as
shown in Table IX. Moreover, the relative frequencies of
winning patterns in the fourth resolution should be considered
uncertain due to the small number of cases. Nevertheless, the
data appear to confirm the expected trend toward more frequent
application of the Direct Intercept pattern after the Offset and
Path Stretch patterns have added turn waypoints to the route.

D. ImprovingPBG4 Performance

The SPAS dataset is likely to yield a very conservative
estimate of the speed of PBGA. According to informal
observations on comparable (but more recently acquired)
equipment, PBGA elapsed time has since improved
significantly due to processor speed alone. These observations
also indicate that the elapsed time is sensitive to the compiler
options under which the software was built. SPAS used a
"debug" build of AOP (one that was linked with debug
infornation), which made the execution of AOP consistent
with debug runs performed by developers, but slower than an
optimized build. In recent test runs comparing a "debu g" build
of AOP with one that was built in "release" mode, the elapsed
time for an example with 11 aircraft was reduced by 51
percent, and reductions in elapsed time for 48 to 51 aircraft
were in the range of 61 to 65 percent. The number of
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TABLE IX.	 RELATIVE FREQUENCIES OF PATTERNS IN SEQUENTIAL
RESOLUTIONS BY THE SAME FLIGHT.

uam-
CR	 Num-	 Relative frequenc y (Pei-cent)

bet'	 Viable alterl7s	 WinnintrPatterns

ber	
of	 Direct	 Offset	 Path	 Direct	 Offset	 Path

cases	 Intercept	 .Stretch	 Intercept	 Stretch

1	 4955	 20.20	 98.00	 99.84	 0.02	 67.23	 32.75

2	 1597	 78.40	 74.39	 94.24	 16.47	 37.82	 4.5.71

3	 1	 260	 89.62	 75.00	 91.15	 26.92	 33.85	 39.23

4	 1	 37	 78.38	 78.38	 91.89	 29.73	 37.84	 32.43



observations is too few to pernnit statistical analysis, but it is to
be expected that a new experiment of the same scale as SPAS
would result in much shorter mean elapsed times for PBGA.

At this point no formal studies have been performed to
determine the most efficient patterns and parameters for
PBGA. The algorithm often finds conflict-free routes almost
immediately and spends the rest of its time optimizing these
routes. On the other hand, the patterns in use were purposely
limited. For example, on straight portions of a route, the
existing patterns permit significant departure from this path on
only one side. This prevents lateral resolution in some cases
where a pattern such as an S turn be conflict-free. It is
possible that a different choice of patterns and GA parameters
would make CR possible in less elapsed time with a lower rate
of failure on each attempt.

Subsequent experiments plan to permit both lateral and
vertical maneuvers. This will require AOP to track a larger
nunber of aircraft at any given airspace density, since it must
consider aircraft at multiple flight levels. On the other hand, the
average cost per traffic aircraft is likely to decrease, since it
typically takes far fewer operations to rule out conflicts with an
aircraft at a different level than it does for an aircraft at the
same flight level as the ownship. At the same time, the vertical
degree of freedom may enable resolution of some conflicts that
could not be resolved by lateral patterns.

While the number of aircraft in the SPAS experiments was
limited by the size of the evaluation area at any given traffic
density, it is possible that future applications of AOP may
receive information about all traffic aircraft in a much larger
airspace. Fortunately, AOP uses less processing to probe
distant trajectories than to probe nearer ones. It may be
necessary, however, to employ additional known techniques
that can efficiently eliminate many aircraft from consideration
before PBGA is started.

VI. CONCLUDING REMARKS

The pattern-based genetic algorithm that is the foundation
of the AOP strategic CR capability successfully resolved all
conflicts experienced during the SPAS baseline experiment and
all but three hi ghly complex conflicts in the SPAS pilot delay
experiment. Though the number of error sources was kept to a
minimum in these runs, the fact that AOP's strate gic CR
capability was able to resolve these conflicts without the need
for either vertical or tactical maneuvering, even when traffic
densities were increased to 1OX-12X current day traffic levels,
is a significant result. PBGA's current perforniance is adequate
for follow-on batch-mode experiments that will explore and
identify specific error sources (e.g., wind errors) and
operational conditions under which vertical and tactical
maneuvering become necessary. In addition, even without
expected improvements this is a promising baseline for future
human-in-the-loop experiments.
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